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Abstract—The numerical solution of a class of problems for non-linear mass transfer in laminar diffusion

boundary layers for a gas-liquid system is obtained utilizing a numerically stable continuation type shooting

procedure for the fumerical integration of asymptotic boundary value problems for systems of ordinary

differential equations. The influence of gas solubility and non-linear effects in the gas on the hydrodynamics
and the mass transfer have been studied. Numerical results are also reported.

INTRODUCTION

IN PART 1 of this study [1] an asymptotic theory was
developed allowing for the calculation of the rates of
mass transfer in the diffusion boundary layers close
to the moving phase boundary of a gas-liquid system
and accounting for the non-linear effects induced by
an intensive interphase mass transfer. Comparison of
these effects in the two phases by means of 8; and 8,

8;  2poeay,

g Bt > 1 )
indicates that they differ by more than two orders of
magnitude. This means that 8, and 6, cannot be small
simultaneously when real effects are to be determined.

It was shown in ref. {1] that for practically inter-
esting cases §, ~ 0 while #, depends on the con-
centration of the substance absorbed in the gas phase
and it is small for low concentrations only. Thus, for
moderately high and high concentrations the asymp-
totic theory ceases to be valid. For this reason a
numerical procedure has to be developed and such a
procedure will be presented in what follows. Numeri-
cal results for several values of 8, and y/e, will be
reported and discussed.

STATEMENT OF THE PROBLEM AND THE
NUMERICAL METHOD

We shall be concerned with the numerical solution
of the following boundary value problem for a system
of ordinary differential equations [1]:

et ddl =0, ¢ =¢i(51)
34267 e =0, ¢y = ha(E2),

£ >0
£, >0

801

HMT 31l:4-I

Ve =0, ¥y =y(§), >0
26,005 =0, Yo=ya(,). & >0
)
subject to boundary conditions
¢, (0) = —6;1(0)
$1(0) =20, 63(0)
¥1(0) = 1-y,(0)
$7(0) = 2¢7"
{0y =0
$:(0) = 8,92(0)
g V
7(0) = — 130, (?) 7 (0)
2
Y50 = 2y10)
4]
Pa(0) =3
¥i(e0) = 0. '6)

As seen from equations (2) and (3) this system could
be decoupled into two separate boundary value prob-
lems. The first one comprises the first two equations
from equations (2) and the first five equations from
equations (3), while the second one comprises the
remaining equations of equations (2) and (3).
Assuming initial guesses for ¢5(0) and ,(0) and
utilizing the improved continuation type shooting
procedure [2] one could find approximations for ¢3(0)
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Table 1
A/e0 0, 6:(0) ¢1(0) 70
0 0 0 0.211 (0.200) 1.30
0.1  0.0785 (0.0664)  0.215 (0.200) 1.40
0.2 0.170 (0.133) 0.217 (0.200) 1.52
0.3 0.280 (0.199) 0.219 (0.200) 1.66
0.1 0 0 0.215 1.30
0.1  0.0733 0.216 1.39
0.2 0.157 0.217 1.50
0.3  0.254 0.219 1.63
1 0 0 0.216 (0.200) 1.30
0.1  0.0450 (0.0416)  0.217 (0.200) 1.36
0.2 0.0952 (0.0832) 0.218 (0.200) 1.42
0.3 0.146 (0.125) 0.219 (0.200) 1.45
10 0 0 0.217 1.30
0.1 0.0101 0.217 1.32
02 0.202 0.217 1.33
0.3 0.0304 0.217 1.34

and ¢{'(0). These quantities can be used in the second
system and therefrom to calculate new approxi-
mations for ¥,(0) and ¢5(0), etc. Thus, integrating
iteratively the two systems one obtains on every iter-
ation improved estimates for the unknown initial
values ¢,(0), ¢1(0), ..., ¥3(0). If this iterative process
is convergent it will yield approximations for the
initial conditions mentioned and estimates for the
‘computational infinities’ for both phases together
with estimates for the reliability of the computed solu-
tions [2]. If x/eo > 1 one has to modify slightly the
iteration scheme (the third and eighth equations from
equations (3) will exchange places) to suppress ampli-
fying disturbances due to the unknown initial con-
dition y{(0).
Thus one has the following iteration schemes.

For y/eo < 1:
i FH Va7 G VYA =0, £, >0
YrED Lot YR =0, §,>0 (@)

Table 2
A€o 0, ¥.1(0) —¢1(0)
0 0 0.999 (1) 0.729 (0.725)
0.1 0.999 (1) 0.785 (0.751)
0.2 0.999 (1) 0.851 (0.776)
0.3 0.999 (1) 0.932 (0.801)
0.1 0 0.941 0.687
0.1 0.937 0.733
0.2 0.933 0.787
0.3 0.928 0.848
1 0 0.617 (0.633) 0.451 (0.431)
0.1 0.603 (0.627) 0.460 (0.438)
0.2 0.596 (0.622) 0.476 (0.444)
0.3 0.583 (0.616) 0.487 (0.450)
10 0 0.138 0.101
0.1 0.137 0.101
0.2 0.136 0.101
0.3 0.135 0.101

0 = — 0.9, <& =0

$i*T0(0) =20, 24i9(0), & =& =0
1

l/l§k+1)(0) = l—wg")(()), &=6=0
;%D (0) = 2671, (i~
./lgk_'_l)(w) =0, é‘ — 00 (5)

where ¥,(2(0), ¢5”(0) and ¥{"(0) are prescribed
initial guesses

¢34V 4207 BT IGFED =0, £, >0
U £ 20,08 DY =0, &> 0 (6)
GEDO0) = 0,45%0), £, =0

2
¢£/(k+l)(0) - %02 (Z) ¢;/(k+l)(o), (E,=¢,=0

wito0) = Eye©, G=e-0

$;**V(0) =¢3!, &>
Y V(o0) =0, &0 ™

where y5”(0) is a prescribed initial guess.
For /e, = 1 the first three equations of equations
(5) and (7) are replaced

00 = —04{®(0), ¢ =0

$i**0(0) =20, 2419(0), & =&, =0

1

YiEFD(0) = <£>_ ¥i®0), & =¢(,=0

¢£k+ 1)(0) — 04,/,2;(k)(0), £, =0 (8)

2
¢£/(k+l)(0) - _%02 <§) ¢1//(k+ l)(O), t,=¢=0
2

YEEDO) = 1§+ 0(0), & =¢,=0
k=0,1’23"' (9)

where ¥?(0), ¢5”(0) and ¥5?(0) are prescribed
initial guesses.

The iteration loop parameter k takes values
0,1,2,...,n

When k = n there are two possibilities.

(@) n < Ny

The iterative process has been convergent in the
sense that

Iy® =yl <d, Iyl<1
(B
l 570 <é, lyl>1 (10)

where | ¢ || is the Euclidean vector norm ; (+)’ denotes
differentiation in the independent variable, &, or &,,
respectively ; d is the prescribed accuracy (usually an
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1234 & \ X /%0 =0
% 8; = Ol
4 8= 0.1{2)
8= 0.2(3)
i+ 8; = 034
3 ¢
£
o f :
£
¢o~ 1074
L 4 2
005
i
4
¢z
LeXie]

FiG. 1.

order of magnitude less than the accuracy of the solu-
tion of the corresponding boundary value problem),
the vector y is defined as

¥' = {¢:(0), $(0), $7(0), ¥, (0), ¥ (0),
$2(0), $5(0), ¢3'(0), ¥2(0), ¥2(®)} (1D

and n,,,, is the prescribed maximum admissible num-
ber of iterations.

(b) n=rn,,,+1 and the convergence criterion,
equations (10) have not been satisfied.

2 -

X/e=

8;= 0l

85 = 0.1(2)
85 = 0.2(3)
i 83 = 0.3(4)

¢l2 14

ate.?

$2v10

QI0

Fi1G. 2.

x/4*0

83 = Ofl)
85 = 0.1(2)
8;~0.2(3)

-¥i 8, = 0.3(4)
0.8

0.0005

00010
Fi1G. 3.

All quantities not explained in the text are listed in
the Nomenclature of ref, [1]. The prescribed initial
guesses mentioned in the above are taken as the values
of the corresponding quantities assuming that non-
linear effects are absent [3].

DISCUSSION OF THE NUMERICAL RESULTS

The iterative procedure described in the previous
section was programmed in ANSI FORTRAN and
numerical simulation was performed on an IBM

0.501

X/%0=1
85 = 0ll)
83 =0.12)
8;+02(3)
85 = 0.34)

0.25

025

Fic. 4.
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360/370 computer in OS environment. In all cal-
culations to be described the following parameters
were used: g, =1, ¢ =20, 8, =0.1, 8,=0.152,
B,=0, 6 =107, m,,, =25, 1/ep=10730.1,1,10,
8; = 0,0.1,0.2,0.3. Representative results for the cal-
culated initial conditions (the vector as defined from
equation (11)) are given in Tables 1 and 2. The cal-
culated functions are shown on Figs. 1-4 and dis-
cussed in what follows. For fixed initial guesses [3] the
rate of convergence varied with the values of y/e; and
8, being poor for 0, large and x/eo=1 (=17}
and very fast for 6; =0 and y/e, =1 (n = 2)—the
initial guesses for this case were taken from ref. [3].
One iteration usually took about 56 min CPU time
and comprises the successive integration of equations
(4) and (5) or (8), and equations (6) and (7) or (9).
For the gas (the first five components of y) the com-
putational infinity was roughly six units in the dimen-
sionless independent variable, while for the liquid (the
last five components of y) it was in the range of 20~
40 units.

THE VELOCITY DISTRIBUTIONS

The velocity distributions in the diffusion boundary
layers are determined by the functions ¢3i(¢,) and
¢5(&,) (Figs. 1 and 2), for different values of y/g,
and #,. These figures show the influence of the mass
transfer on the hydrodynamics of the flow and, in
particular, on the velocity component, normal to the
phase interface and determined by the values of ¢,(0)
and ¢,(0) (Table 1). In this table one can also find
values for ¢7(0) and ¢ (0) calculated according to the
previous section. In parentheses we have given the
values of the same quantities as calculated by means
of the asymptotic theory [1].

THE CONCENTRATION DISTRIBUTIONS

The concentration distributions ,{&;) and y,(&,)
are shown on Figs. 3 and 4 for the corresponding
values of /¢, and 6. From these figures one can see
the non-linear effects in the gas and their influence on
the mass transfer in the liquid. The corresponding
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values of {,(0) and ¢1(0) as calculated according to
the previous section are summarized in Table 2.
Again, in parentheses we have listed the values of
the same quantities calculated through the asymptotic
theory {1].

In ref. [1] it was shown that the interphase mass
transfer and the mass transfer in the separate phases
are determined in a unique manner by the dimensionless
diffusive fluxes ¥1(0) and ¥3(0) at the phase interface.
Numerical data for these quantities can also be found
in Table 2.

CONCLUSIONS

The numerical results obtained indicate that the
non-linear effects in the gas phase are most pro-
nounced for highly soluble gases (y/e, — 0). When the
solubility of the gas is moderate (y/¢, ~ 1) the non-
linear effects are still significant, but when the solu-
bility of the gas decreases (y/e, > 1) they can be
neglected.

The non-linear effects in the liquid are the result
of the non-linear mass transfer in the gas. They are
negligible in respect to the hydrodynamics. Mass
transfer in the liquid depends most strongly on the
non-linear effects in the gas for moderately soluble
gases (x/e, ~ 1). For highly soluble gases (y/e, — 0)
and weakly soluble ones (y/g, > 107) it is negligible
because in the former case the mass transfer is limited
only by the gas, while in the latter one, the non-linear
effects can be neglected.
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TRANSFERT DE MASSE NON LINEAIRE DANS DES COUCHES LIMITES—
2. ETUDE NUMERIQUE

Résumé—La solution numérique d’une classe de problémes pour le transfert de masse non linéaire dans

des couches limites laminaire de diffusion, d’un systéme gaz-liquide, est obtenue en utilisant une procédure

numériquement stable pour I'intégration des systémes d’équations différentielles. On considére I'influence

de la solubilité du gaz et des effets non linéaires dans le gaz sur 'hydrodynamique et le transfert de masse.
On présente aussi des résultats numériques.
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NICHTLINEARER MASSENTRANSPORT IN GRENZSCHICHTEN—
2. NUMERISCHE UNTERSUCHUNG

Zusammenfassung—Es wird die numerische Losung einer Klasse von Problemen des nichtlinearen

Massentransports in laminaren Diffusionsgrenzschichten fiir Gas—Fliissigkeits-Systeme ermittelt. Zur

numerischen Integration der asymptotischen Grenzwertprobleme bei Systemen gewdhnlicher Differ-

entialgleichungen wird ein numerisch stabiles Verfahren vom Erhaltungstyp verwendet. Der EinfluBl der

Gasloslichkeit und nichtlinearer Effekte im Gas auf die Hydrodynamik und den Massentransport wurden
untersucht. Es werden numerische Ergebnisse vorgestelit.

HEJIMHENHBII MACCOOEMEH B IIOTPAHHYHBIX CJIOSIX—2. YUCJIEHHOE
HUCCJIENOBAHHUE

Anmorams—Hcnonb3ys ycTOHYHBLIH, HENPEPLIBHOTO THIA METOJ YHC/ICHHOTO HHTEIPHPOBAHHA acHMII-

TOTHYECKHMX TPaHHYHBIX 3a7a¥ JUI CHCTeM OOLIKHOBeHHBIX OHGepeHLHaIbHLIX YpaBHEHHH, Ha3bIBac-

MEiif METOIOM IPHCTPENIKH, NOJTy4eHO YHCJIEHHOE PellieHHe Kilacca 3a/1a4 HeJMHEHHOro MacconepeHoca

B JIaMMHapHOM I#(})y3HOHHOM MOrPaHWYHOM CJIO€ IUIS CHCTEM ‘Ta3—KHIOKOCTh'. HaydeHo BiHAHHE

PACTBOPMMOCTH Ta3a H HequHelHbIX 3¢pexToB B rase Ha THAPOAMHAMHKY ¥ MacconepeHoc. [pencras-
JIEHbI YHCJIEHHBIE PE3YIIbTATHL.
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